
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: EXPRESS BRIEFS, VOL. , NO. , FEBRUARY 2023 1

Robust bipartite output regulation of linear uncertain
multi-agent systems under observer-based protocols

Jiashuo Liu1, Cui-Qin Ma1, Yun-Bo Zhao2, and Yu Kang2

Abstract—Robust bipartite output regulation of linear un-
certain multi-agent systems is studied over a signed digraph.
Since only parts of agents have access to the information of the
exosystem, a distributed observer is introduced to estimate the
exosystem state for each agent. Then, a distributed control proto-
col is proposed based on the internal model method and observer
for the exosystem. By exploiting matrix analysis and algebraic
graph theory, sufficient conditions for achieving robust bipartite
output regulation are given. It is shown that the multi-agent
system being structurally balanced and the augmented multi-
agent system having a spanning tree with the exosystem being
the root are the communication topology conditions for ensuring
robust bipartite output regulation. Finally, the correctness of the
results is validated by an example.

Index Terms—Robust bipartite output regulation, linear multi-
agent systems, signed digraph, structurally balanced.

I. INTRODUCTION

OUTPUT regulation (OR), one of the central issues in
coordination control for multi-agent systems (MASs), is

to design a controller for each agent using interactions among
agents such that the agent output can track the reference signal
generated by the exosystem while preserving the closed-loop
system stability. Generally, the exosystem can be regarded as
a virtual leader of the MAS, and OR in this sense has also
been seen as an extension of the leader-following consensus
problems ([1], [2]). OR has appealed to extensive attention
from the research community in recent years ([3]–[11]). In [3],
for linear MASs with each agent having a distributed observer
for the exosystem, a distributed state feedback controller with
observers was proposed and sufficient conditions for ensuring
OR were established. Then, the distributed controller with
global information of communication topology in [3] was
improved in [4] to a fully distributed adaptive controller over
digraphs, and OR with asymptotical convergence in [3] was
extended in [5] to the finite-time stable manner. Moreover,
OR in the presence of actuator faults and DoS attacks was
studied in [6]. Note that the agent dynamic parameters in
[3]–[6] are all assumed to be completely known. However,
in reality, agents are easily subject to external disturbances
and their parameters are commonly uncertain. For uncertain
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MASs, OR has been thoroughly studied ([7]–[9]). To name
a few, in [7], for linear uncertain MASs, depending on an
internal model approach, distributed state feedback and output
feedback protocols were given for agents, respectively. For
guaranteeing robust OR, necessary and sufficient conditions
regarding the communication graph of the MAS were pro-
posed. Further, the robust OR problem in [7] was generalized
in [8] to the scenarios with communication and input time-
delays.

The aforementioned works focus only on cooperative inter-
actions among agents, but not antagonism that is indispensable
in the real world. By modeling the interactions among agents
as a signed graph with positive and negative edges for co-
operation and antagonism, respectively ([12]–[14]), bipartite
OR problem can be properly modeled and has attracted much
attention ([15]–[20]). For example, in a two-party scenario,
one supports only its own party. Hence, party members are
cooperative in their own party but are antagonistic in between.
This leads to bipartite OR naturally, characterized by exactly
opposite objectives of agents. The bipartite OR problem exists
for both certain ([15]–[19]) and uncertain systems ([20]). For
the former, in [15], the relation between OR and bipartite OR
for linear MASs was investigated, showing their equivalence
in some sense. Subsequently, in [16], under the assumption
that only parts of agents can get information of the exosys-
tem, distributed observers were designed, based on which
distributed output feedback protocols were constructed for
linear MAS via an internal model principle to reach bipartite
OR. Besides, bipartite OR problem for heterogeneous MASs
was considered in [17], [18]. However, robust bipartite OR for
uncertain systems has not been well studied to date.

In this paper, robust bipartite OR of linear uncertain MASs
is studied under a signed digraph. Each agent is described by
a linear system with uncertain parameters, subject to different
influence by the exosystem. Unlike the results in [20], here
each agent cannot utilize the output of the exosystem for its
controller design, even though it has communication link with
the exosystem. Only parts of agents can synthesize controllers
using the state of the exosystem. So, to estimate the exosystem
state, a distributed observer is introduced, and it is proved that
the state estimation error of each observer converges to zero
asymptotically. In contrast with existing results on cooperative
OR problem, there exist both cooperation and antagonism
for robust bipartite OR problem under signed digraphs. Thus,
the output error between agents is not merely the difference
of the agent outputs and might be the sum. This brings
difficulties in protocol design and closed-loop system analysis.
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To overcome the difficulties, an observer-based distributed
protocol is proposed with the help of an internal model
principle. By exploiting theories of matrix analysis and related
lemmas, properties regarding the convergence of the closed-
loop system are fully characterized. Sufficient conditions for
solving robust bipartite OR problem are obtained for linear
uncertain MASs under signed digraphs.

The contributions of the present work are threefold. First,
the problem setting considers the joint impact of system
uncertainty and unknown exosystem states on bipartite OR.
Second, a distributed control protocol on the basis of observer
and the internal model principle is proposed for each agent.
Finally, sufficient conditions to achieve robust bipartite OR are
given for linear uncertain MASs.

The remainder is organized as follows. Relevant results
concerning graph theory and problems of robust bipartite OR
are discussed in Section II. The main results for robust bipartite
OR problem are presented in Section III. We give an example
to substantiate the analysis in Section IV and conclude the
paper in Section V.

Notations: In is a n-dimensional identity matrix. 1N de-
notes a column vector with all elements being 1. λi(A) repre-
sents the ith eigenvalue of matrix A. diag(·) means a diagonal
matrix. Re(·) represents the real part. vec(B) : Rn×m → Rnm

represents vector function of matrix B ∈ Rn×m. sgn(·)
denotes a sign function.

II. PRELIMINARIES

A. Graph Theory
For a signed digraph G = (V, E ,A) with N agents, V =

{1, · · · , N}, E ⊆ V × V , and A = [aij ] ∈ RN×N . If there
exists an edge from k to j, i.e., (k, j) ∈ E , then ajk 6= 0. In
particular, ajk > 0 means cooperation between j and k while
ajk < 0 means antagonism. In this paper, we always assume
that akk = 0 and akjajk ≥ 0. Let Ni = {k|(k, i) ∈ E} be
agent i’s neighbour set. Laplacian matrix of G is given by
L = (lij), in which lii =

∑N
k=1 |aik|, and lij = −aij , i 6= j.

If there is a directed path from one node to all the other nodes
in a digraph, then the digraph contains a spanning tree with
this node as its root.
G = (V, E ,A) is structurally balanced if V can be di-

vided into two disjoint subsets V1,V2 such that akl ≥
0,∀k, l ∈ Vt (t ∈ {1, 2}) ; akl ≤ 0,∀k ∈ Vt,∀l ∈
Vs, (t 6= s, t, s ∈ {1, 2}) and structurally unbalanced, other-
wise.

B. System Models
The considered MAS contains N agents, with agent i being

modeled as follows,

ẋi = Āxi + B̄ui + Ēiv

yi = C̄xi, i = 1, · · · , N,
(1)

where xi ∈ Rn, ui ∈ Rm, yi ∈ Rp are the state, input
and output of agent i, respectively. v ∈ Rq , the state of
the exosystem, represents a reference signal and disturbance,
which satisfies

v̇ = Sv

y0 = Fv,
(2)

where y0 ∈ Rp is the reference output, S and F are known
constant matrices. In addition, Ā, B̄, C̄, Ēi are uncertain ma-
trices with compatible dimensions, and

Ā = A+ ∆A, B̄ = B + ∆B, C̄ = C + ∆C,

Ēi = Ei + ∆Ei(i = 1, · · · , N),

where A, B, C, Ei are known matrices and ∆A, ∆B, ∆C,
∆Ei represent unknown uncertain matrices.

For convenience, we define uncertain vector

∆ =
(
(vec (∆A))T , (vec (∆B))T , (vec (∆C))T ,

(vec (∆E1))T , · · · , (vec (∆EN ))T
)T ∈ Rn(n+m+p+Nq).

When ∆ = 0, system (1) is a nominal system.
We regard the exosystem as a virtual leader, labelled 0. Let

Ḡ = (V̄, Ē , Ā) be an augmented signed digraph, where V̄ =
V ∪ {0}, Ā = [aij ], i, j ∈ V̄ . Furthermore, ai0 6= 0 if agent i
can obtain information from leader 0 and ai0 = 0, otherwise.
Let T = diag(a10, a20, · · · , aN0) ∈ RN×N be the pinning
matrix between leader and agents. It is worth noting that in
this paper the pinning weight ai0 can be negative, without
having to be all nonnegative. L̄ denotes Laplacian matrix of
Ḡ. Then,

L =

(
0 0

−T1N H

)
,

where H = L+ T̄ , T̄ = diag(|a10|, |a20|, · · · , |aN0|).
For further analysis, we introduce the following assump-

tions.
(A1) Re(λi(S)) ≥ 0, i = 1, · · · , q.
(A2) (A,B) is stabilizable.

(A3) ∀λ ∈ %(S), rank

(
A− λI B
C 0

)
= n+p, where %(S)

is the spectrum of S.
(A4) G is structurally balanced and Ḡ has a spanning tree with

virtual leader 0 as its root.
Remark 1: (A1)-(A3) are common assumptions in OR

problems ([21]). They are employed to guarantee the solvabili-
ty of robust bipartite OR. Assumption (A4) is the requirement
on communication topology for achieving OR. Unlike most
existing results, where Ḡ is supposed to be structurally bal-
anced, here only G is required to be structurally balanced.

If Assumption (A4) holds, G is structurally balanced. Then,
define output error of agent i as

ei(t) = yi(t)− diy0(t), (3)

where di = 1, i ∈ V1; di = −1, i ∈ V2.
Definition 1 ([22]): For linear uncertain MAS (1) and ex-

osystem (2), if there exists a control protocol for each agent,
such that

(i) the system matrix of the nominal closed-loop system
is Hurwitz;
(ii) there is an open neighborhood U of ∆ = 0,
such that ∀∆ ∈ U and for any initial condition,
limt→∞ ei(t) = 0, i = 1, · · · , N,

then linear uncertain MAS (1) is said to achieve robust
bipartite OR.

The main aim of this paper is to develop a protocol for
each agent in MAS (1) such that the agent output can track
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the exosystem output or its opposite one, i.e., robust bipartite
OR. To this end, we present the following assumption and
lemmas.

Definition 2 ([22]): (Π1,Π2) incorporates the
minimum p-copy internal model of matrix S, if
Π1 = diag (Φ, . . . ,Φ)︸ ︷︷ ︸

p-tuple

, Π2 = diag (χ, . . . , χ)︸ ︷︷ ︸
p-tuple

, where

Φ is a constant square matrix whose characteristic polynomial
equals the minimal polynomial of S, and χ is a constant
column vector such that (Φ, χ) is controllable.

Before listing the lemmas, another assumption is needed.
Assumption (A5): (Π1,Π2) incorporates the minimum p-

copy internal model of S.
Lemma 1 ([22]): If Assumptions (A1)-(A3) and (A5) hold,

then (M,N) is stabilizable, where

M =

(
A 0

Π2C Π1

)
, N =

(
B
0

)
.

Lemma 2 ([22]): Suppose Assumptions (A1) and (A5)

hold. If Ac =

(
Â B̂

Π2Ĉ Π1

)
is Hurwitz, then ∀ Ê, F̂ ,

{
QS = ÂQ+ B̂R+ Ê

RS = Π1R+ Π2(ĈQ− F̂ )

has a unique solution Q and R. Furthermore, Q and R satisfy
0 = ĈQ− F̂ .

III. MAIN RESULTS

Since only parts of agents have access to information of the
virtual leader, a distributed control protocol based on observer
is proposed for the i-th agent:

ui = K1

( ∑
j∈Ni

aij(sgn(aij)xi−xj)+|ai0|xi
)
+K2zi, (4)

żi = Π1zi + Π2

(∑
j∈Ni

aij(sgn(aij)yi − yj) + |ai0|yi
)

−Π2

(∑
j∈Ni

aij(sgn(aij)Fξi − Fξj) + |ai0|Fξi
)
,(5)

ξ̇i = Sξi − γ
( ∑
j∈Ni

aij(sgn(aij)ξi − ξj) + |ai0| (ξi − div)
)
,

(6)
where zi ∈ Rnz is the state of the internal model constructed
for agent i, ξi ∈ Rq is the state estimation of the exosystem,
F is introduced in (2). γ > 0 is the gain coefficient, and Π1,
Π2, K1, K2 are gain matrices.

Remark 2: Protocol (4) is designed based on the internal
model principle, which can deal with parameter uncertainty in
system (1) effectively with more robustness. Moreover, proto-
col (4) only uses information of agent i and its neighbours,
and thus is distributed.

Remark 3: (i) Different from previous compensators for
robust OR or robust bipartite OR of MASs, e.g., [7], [8],
[20], where the exosystem output is utilized, here, instead,
outputs of agent i and its neighbours and state estimation of
the exosystem are integrated into compensator (5).

(ii) In contrast with observers in [18], [19], the observer gain
in (6) does not rely on the solution to the linear matrix
inequalities. Moreover, if ai0, aij ≥ 0(j ∈ Ni), then
observer (6) is reduced to the observer in [3].

Define the estimation error of the distributed observer for
agent i as ξ̃i(t) = ξi(t) − div(t) (i = 1, · · · , N). Then the
following result regarding the estimation error holds.

Theorem 1: If Assumptions (A1) and (A4) hold, then
limt→∞ ξ̃i(t) = 0, i = 1, · · · , N .

Proof: By (2) and (6), one has

˙̃
ξi = Sξ̃i − γ

∑
j∈Ni

aij(sgn(aij)ξ̃i − ξ̃j) + |ai0|ξ̃i

 , (7)

where the equality is obtained by the fact that sgn(aij)di = dj .
Rewrite (7) as a stack vector form:

˙̃
ξ = (IN ⊗ S − γH ⊗ Iq)ξ̃,

in which ξ̃ = (ξ̃T1 , ξ̃
T
2 , · · · , ξ̃TN )T . Since Assumption (A4)

holds, by Lemma 3 in [23], Re(λj(H)) > 0, j = 1, · · · , N .
According to Assumption (A1), Re(λi(S)) ≥ 0, i = 1, · · · , q.
Thus, by choosing a sufficiently large γ > 0, one has
Re {λi(S)− γλj(H)} < 0, (i = 1, · · · , q; j = 1, · · · , N).
Then, IN ⊗ S − γH ⊗ Iq is Hurwitz. Therefore,
limt→∞ ξ̃i(t) = 0, i = 1, · · · , N .

Remark 4: Different from [20], here only parts of agents
can obtain information of the exosystem, and its pinning
weight can be negative. So, each agent has to utilize the
proposed distributed observer for estimating the exosystem
state. From Theorem 1 one can see that the state estimation
error of all distributed observers will asymptotically reach
zero.

Before deriving the main result, we introduce a matrix prop-
erty, which is helpful for analyzing the closed-loop system.

Lemma 3: If Assumptions (A1)-(A5) hold,
then by choosing K1, K2 appropriately, Ac1 =(
IN ⊗A+H ⊗BK1 IN ⊗BK2

H ⊗Π2C IN ⊗Π1

)
is Hurwitz.

Proof: Since Assumption (A4) holds, Re(λi(H)) >
0, i = 1, · · · , N . Let Ω = U−1

1 HU1 be the Jordan form
of H , where U1 is a nonsingular matrix. Denote U =(
U1 ⊗ IN 0

0 U1 ⊗ IN

)
. Then

Âc1 = U−1Ac1U =

(
IN ⊗A+ Ω⊗BK1 IN ⊗BK2

Ω⊗Π2C IN ⊗Π1

)
.

(8)
Implementing elementary row and column transformations

to Âc1, one obtains

V −1Âc1V =

(
JÂc1,1

. . . JÂc1,N

)
, (9)

where JÂc1,i
=

(
A+ λi(H)BK1 BK2

λi(H)Π2C Π1

)
, i =

1, · · · , N. Denote Ti =

(
In 0
0 λ−1

i (H)Inz

)
. Then,

TiJÂc1,i
T−1
i =

(
A+ λi(H)BK1 λi(H)BK2

Π2C Π1

)
.
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Since Assumption (A5) holds, by Assumptions (A1)-(A3)
and Lemma 1, we get that (M,N) is stabilizable. There-
fore, Riccati equation MTP + PM + In − PNNTP = 0
has a unique positive semi-definite solution P , and hence
M −θNNTP is Hurwitz by Theorem 2 in [24], where θ ∈ C
and Reθ ≥ 1. Choose K1, K2 such that

(K1,K2) = −τ−1NTP, (10)

where τ satisfies 0 < τ ≤ min1≤i≤N{Re(λi(H))}. Then,
for ∀i = 1, · · · , N , M + λi(H)N(K1,K2) = M −
λi(H)τ−1NNTP is Hurwitz. Notice that TiJÂc1,i

T−1
i =

M + λi(H)N(K1,K2). Hence, JÂc1,i
is Hurwitz. Combining

(8) and (9), one gets that Ac1 is Hurwitz.
The main result is then summarized as follows.
Theorem 2: For linear uncertain MAS (1) and exosystem

(2), if Assumptions (A1)-(A5) hold, and K1, K2 satisfy (10),
then by choosing a sufficiently large γ > 0, MAS (1) can
achieve robust bipartite OR with protocol (4).

Proof: Let xc∆= (xT , zT , ξT )T , where x = (xT1 , xT2 ,
· · · , xTN )T , z = (zT1 , z

T
2 , · · · , zTN )T , and ξ = (ξT1 , ξ

T
2 ,

· · · , ξTN )T . Then, applying protocol (4) to system (1) yields

ẋc∆ = Ac∆xc∆ +Bc∆v,

where Ac∆ = IN ⊗ Ā+H ⊗ B̄K1 IN ⊗ B̄K2 0
H ⊗Π2C̄ IN ⊗Π1 −H ⊗Π2F

0 0 IN ⊗ S − γH ⊗ Iq

 ,

(11)

Bc∆ =

 Ē
0

γHD1N ⊗ Iq

 , Ē = (ĒT
1 , Ē

T
2 , · · · , ĒT

N )T ,

D = diag(d1, d2, · · · , dN ). Let

Āc1 =

(
IN ⊗ Ā+H ⊗ B̄K1 IN ⊗ B̄K2

H ⊗Π2C̄ IN ⊗Π1

)
. (12)

Since Assumptions (A1)-(A5) hold and K1, K2 satisfy (10),
by Lemma 3, Ac1, the nominal system matrix of Āc1, is
Hurwitz. Thus, there is an open neighborhood U of ∆ = 0,
where Āc1 is Hurwitz. By Assumptions (A1) and (A4), The-
orem 1 indicates that IN ⊗ S − γH ⊗ Iq is Hurwitz for a
sufficiently large γ > 0. Combining (11) and (12), one obtains
that ∀∆ ∈ U , Ac∆ is Hurwitz.

Since Assumption (A5) holds, Assumption (A1) and Lemma
2 imply that there exist matrices Q,R in U , satisfying QS =

(
IN ⊗ Ā+H ⊗ B̄K1

)
Q+ (IN ⊗ B̄K2)R+ Ē,

RS = (H ⊗Π2C̄)Q+ (IN ⊗Π1)R−HD1N ⊗Π2F,
0 = (IN ⊗ C̄)Q−D1N ⊗ F.

(13)
Note that ξ̃ = ξ−(D1N⊗Iq)v. Let x̃ = x−Qv, z̃ = z−Rv,

and Xc = (x̃T , z̃T , ξ̃T )T . Then, by (13), Ẋc = Ac∆Xc. There-
fore, Xc converges to zero asymptotically in U , which implies
that limt→∞ x̃(t) = 0. Denote e = (eT1 , e

T
2 , · · · , eTN )T . By (3),

one can get e = (IN ⊗ C̄)x̃ + ((IN ⊗ C̄)Q − D1N ⊗ F )v.
This together with (13) gives limt→∞ e(t) = 0. By Definition
1, MAS (1) can achieve robust bipartite OR with protocol (4).

Remark 5: Compared with results in [3]–[11], where only
cooperative interactions are considered, here cooperation and
antagonism coexist. In this context, some agents’ outputs
will track the reference signal while others’ converge to
the opposite value. This means that robust bipartite OR is
achieved. In particular, robust OR problem is also reached
under protocol (4) in this paper if only cooperative interactions
exist.

Based on Theorem 2, gain matrices Π1, Π2, K1, K2 in
protocol (4) can be chosen as in Algorithm 1.

Algorithm 1 Solution algorithm of gain matrices

Input: system matrices A,B,C, S.
Output: gain matrices Π1,Π2,K1,K2.
(i) Calculate the minimal polynomial of S and select Π1,
Π2 satisfying Assumption (A5) in terms of Definition 2.

(ii) Let M =

(
A 0

Π2C Π1

)
, N =

(
B
0

)
.

(iii) Solve MTP +PM + In−PNNTP = 0 to obtain the
positive semi-definite solution P .
(iv) Calculate H = L+ T̄ and select τ such that 0 < τ ≤
min1≤i≤N{Re(λi(H))}. Output the gain matrices K1,K2

by (10).

IV. SIMULATION

Consider an MAS with 4 agents in (1) and (2), where

A =

 −1 1 0
1 1 0
0 0 1

 , B =

 0
1
1

 ,

C =
(

1 1 1
)
, Ei =

 0 i 0
0 0 0
0 0 i

 (i = 1, 2, 3, 4),

S =

 0 1 0
0 0 1
0 −1 0

 , F =
(

1 1 0
)
.

Clearly, Assumptions (A1)-(A3) hold. Suppose that the
uncertain matrices

∆A =

 0 0 0
0 0 0

0.01 sin(t) 0 0

 , ∆B =

0.01 cos(t)
0
0

 ,

∆C = ∆Ei = 0.

Communication interactions among the 4 agents are represent-
ed by G = (V, E ,A)(see Fig. 1), where A = [aij ], a21 = 2,
a32 = −3, a34 = 4. Moreover, a10 = 1, a20 = −1, a40 = −2.
Obviously, Assumption (A4) holds.

4321

0

2 -3

1 -1 -2

4

Fig. 1. Communication topology.
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Fig. 2. (a) The estimation error of distributed observers. (b) The regulated
output error.
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Fig. 3. (a) Trajectories of the agent outputs under the state feedback control
in [20]. (b) Trajectories of the agent outputs under protocol (4).

By direct calculations, λ1(H) = 1, λ2(H) = 2,
λ3(H) = 3, λ4(H) = 7. Select τ = 1/2 such that
0 < τ ≤ min1≤i≤4{Re(λi(H))} = 1. By (10), (K1,K2) =
(−46.7255,−117.5969, 102.8085, 2.0000,−2.4790, 4.4196).
Choose γ = 1 > 0 in protocol (4)-(6),
where d1 = d2 = 1; d3 = d4 = −1, and

Π1 =

 0 1 0
0 0 1
0 −1 0

 , Π2 =

 0
0
1

 satisfying

Assumption (A5).
As shown in Fig. 2, the estimation error of the observer and

the regulated output error of each agent will asymptotically
reach zero, respectively. This indicates that robust bipartite
OR is achieved under protocol (4). Compared with the state
feedback control in [20] using the exosystem output directly, in
protocol (4), the state estimation of the exosystem is utilized.
Applying these two protocols, we can see from Fig. 3 that
the time of agents reaching robust bipartite OR is 28s and
32s, respectively. This implies that the same performance can
be achieved even using protocol (4) without the exosystem
output.

V. CONCLUSION

The robust bipartite OR of linear uncertain MASs is ad-
dressed over a signed digraph. Since the state and output of the
exosystem are unavailable for agents’ controllers, an observer-
based distributed protocol by exploiting the internal model
principle is provided, and sufficient conditions to reach robust
bipartite OR are obtained. The proposed control gain depends
on the global information of the communication topology. It
is meaningful to design controllers for robust bipartite OR in
a fully distributed adaptive way. In the future, robust bipartite
OR with time delays will be an interesting topic.
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